Possible orders of nonassociative Moufang loops

نویسندگان

  • Orin Chein
  • Andrew Rajah
چکیده

The paper surveys the known results concerning the question: “For what values of n does there exist a nonassociative Moufang loop of order n?” Proofs of the newest results for n odd, and a complete resolution of the case n even are also presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moufang Loops of Small Order

The main result of this paper is the determination of all nonassociative Moufang loops of orders *31. Combinatorial type methods are used to consider a number of cases which lead to the discovery of 13 loops of the type in question and prove that there can be no others. All of the loops found are isomorphic to all of their loop isotopes, are solvable, and satisfy both Lagrange's theorem and Syl...

متن کامل

Toward the classification of Moufang loops of order 64

We show how to obtain all nonassociative Moufang loops of order less than 64 and 4262 nonassociative Moufang loops of order 64 in a unified way. We conjecture that there are no other nonassociative Moufang loops of order 64. The main idea of the computer search is to modify precisely one quarter of the multiplication table in a certain way, previously applied to small

متن کامل

The Moufang loops of order 64 and 81

We classify Moufang loops of order 64 and 81 up to isomorphism, using a linear algebraic approach to central loop extensions. In addition to the 267 groups of order 64, there are 4262 nonassociative Moufang loops of order 64. In addition to the 15 groups of order 81, there are 5 nonassociative Moufang loops of order 81, 2 of which are commutative.

متن کامل

Generators of Nonassociative Simple Moufang Loops over Finite Prime Fields

The first class of nonassociative simple Moufang loops was discovered by L. Paige in 1956 [9], who investigated Zorn’s and Albert’s construction of simple alternative rings. M. Liebeck proved in 1987 [7] that there are no other finite nonassociative simple Moufang loops. We can briefly describe the class as follows: For every finite field F, there is exactly one simple Moufang loop. Recall Zorn...

متن کامل

The Structure of Automorphic Loops

Automorphic loops are loops in which all inner mappings are automorphisms. This variety of loops includes, for instance, groups and commutative Moufang loops. We study uniquely 2-divisible automorphic loops, particularly automorphic loops of odd order, from the point of view of the associated Bruck loops (motivated by Glauberman’s work on uniquely 2-divisible Moufang loops) and the associated L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003